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f = dimensionless stream function
g = acceleration due to gravity
h = heat transfer coefficient
k = thermal conductivity
K = permeability for the porous

medium
L = plate length
n = viscosity index
Nu = Nusselt number
Pe = Peclet number
qw = wall heat flux
Ra = Rayleigh number
T = temperature
u,v = velocity components in x and y

directions
U∞ = free stream velocity
vo = velocity in the case of surface

mass transfer

x,y = axial and normal co-ordinates
α = effective thermal diffusivity of 

porous medium
β = volumetric coefficient of thermal

expansion
η = similarity variable
Θ = dimensionless temperature
ν = kinematic viscosity
ξ = mass transfer parameter
ρ = density of fluid
µ = consistency index for 

viscosity
τw = wall shear stress
χ = mixed convection parameter
ψ = stream function

Subscripts
w = wall conditions
∞ = free stream conditions

Note: The symbols defined above are subject to alteration on occasion
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Introduction
The study of convective heat transfer from surfaces embedded in porous
media has received considerable attention recently because of their numerous
thermal engineering applications such as geothermal systems, oil extraction,
thermal insulation and ground water pollution. Cheng and Minkowycz[1]
presented similarity solutions for free convective heat transfer from a vertical
plate in a fluid-saturated porous medium. Gorla and co-workers[2-4] solved
the non-similar problem of free convective heat transfer from a vertical plate
embedded in a saturated porous medium with an arbitrarily varying surface
temperature or heat flux. The mixed convection from surfaces embedded in
porous media was studied by Minkowycz et al.[5] and Ranganathan and
Viskanta[6]. Hsieh et al.[7] presented non-similar solutions for mixed
convection in porous media. All these studies were concerned with Newtonian
fluid flows. A number of industrially important fluids, including fossil fuels
which may saturate underground beds, display non-Newtonian behaviour.
Non-Newtonian fluids exhibit a non-linear relationship between shear stress
and shear rate.

Chen and Chen[8] presented similarity solutions for free convection of non-
Newtonian fluids over vertical surfaces in porous media. Nakayama and
Koyama[9] studied the natural convection over a non-isothermal body of
arbitrary shape embedded in a porous medium.

The present work has been undertaken in order to analyse the mixed
convection from a vertical plate in non-Newtonian fluid saturated porous
media. The effect of surface injection or suction is taken into account. The
governing equations are first transformed into a dimensionless form and the
resulting non-similar set of equations are solved by a finite difference method.
Numerical results are presented for some representative values of the viscosity
index.

Analysis
Let us consider mixed convection from a permeable vertical plate embedded in
a non-Newtonian fluid-saturated porous medium, in the presence of surface
injection or suction at a uniform velocity vo. The co-ordinate system and flow
model are shown in Figure 1. We consider the Darcy model assuming low
velocity and porosity. Invoking the Boussinesq approximation, the governing
boundary layer equations may be written as:

(1)

(2)

(3)
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The appropriate boundary conditions are given by

(4)

In the above equations, u(x,y) and v(x,y) are the velocity components in x and y
directions; T(x,y) the temperature; ρ, µ and β the density, consistency index for
viscosity and thermal expansion coefficient of the fluid; g the acceleration due
to gravity; K and α the permeability and effective thermal diffusivity of the
porous medium; and n the viscosity coefficient for the fluid. The analysis is
performed for the buoyancy assisting flow condition. Therefore, for an upward
forced flow, we have Tw > T∞ and for downward flow, Tw < T∞. We now define
a stream function ψ such that u = ∂

ψ
—∂y and v = –∂ψ

—∂x. The continuity equation (1) is
then automatically satisfied.

Proceeding with the analysis, we define:

Figure 1.
Co-ordinate system and
flow development
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(5)

On substituting expressions (5) into equations (2) and (3) we have:

(6)

(7)

The transformed boundary conditions are given by

(8)

The primes in the previous equations denote partial differentiation with respect
to η only. We note that χ = 0 corresponds to pure natural convection whereas χ
= 1 corresponds to pure forced convection. ξ is positive for injection and
negative for suction. In practical applications, it is usually the surface
characteristics such as friction factor and Nusselt number that are of
importance. 
Defining the local Nusselt number Nux = 

hx—
kf

where h = qw/(Tw–T∞) we have

(9)

Numerical scheme
The numerical scheme to solve equations (6) and (7) adopted here is based on a
combination of the following concepts:

(1) The boundary conditions for η = ∞ are replaced by

(10)
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where ηmax is a sufficiently large value of η at which the boundary
conditions (8) are satisfied. ηmax varies with the value of η. In the present
work, we set ηmax = 25.

(2) The two-dimensional domain of interest (ξ, η) is discretized with an
equispaced mesh in the ξ-direction and another equispaced mesh in the
η-direction.

(3) The partial derivatives with respect to η and ξ are evaluated by the
central difference approximations.

(4) Two iteration loops based on the successive substitution are used
because of the non-linearity of the equations.

(5) In each inner iteration loop, the value of ξ is fixed while each of the
equations (6) and (7) is solved as a linear second order boundary value
problem of ODE on the η-domain. The inner iteration is continued until
the non-linear solution converges for the fixed value of ξ.

(6) In the outer iteration loop, the value of ξ is advanced from –2 to 2. The
derivatives with respect to ξ are updated after every outer iteration
step.

In the inner iteration step, the finite difference approximation for equations (6)
and (7) is solved as a boundary value problem. We consider equation (6) first. By
defining U = φ, equation (6) may be written in the form

(11)

where

(12)

The coefficients a1, b1 c1 and the source term in equation (11) in the inner
iteration step are evaluated by using the solution from the previous iteration
step. Equation (11) is then transformed to a finite difference equation by
applying the central difference approximations to the first and second
derivatives. The finite difference equations form a tridiagonal system and can
be solved by the tridiagonal solution scheme.

Equation (7) is also written as a second-order boundary value problem
similar to equation (12), namely:

(13)



Mixed 
convection

603

where

(14)

The numerical results are affected by the number of mesh points in both directions.
To obtain accurate results, a mesh sensitivity study was performed. After some
trials, in the η-direction 190 mesh points were chosen whereas in the ξ-direction, 41
mesh points were used.

Results and discussion
Numerical results for Θ'(ξ, 0) are tabulated in Table I to include –2 < ξ < 2. The
velocity and temperature profiles are displayed in Figures 2-7 for various values
of the mass transfer parameter, ξ. The momentum and thermal boundary layer
thicknesses increase as ξ increases in the case of injection (ξ, 0) and decrease
with increasing suction (ξ, 0). The velocity and temperature profiles tend to
become box type as n and ξ approach a value of 2.

Figures 8 and 9 display the variation of Nusselt number with χ for the cases
of suction and injection. Figure 8 shows that increasing values of suction
parameter ξ results in augmented surface heat transfer rate. As the viscosity
index n increases, we notice that the Nusselt number decreases. Figure 9 shows
that as the values of the injection parameter ξ increase, the Nusselt number
decreases. Increasing values of the viscosity index also decrease the Nusselt
number in the case of injection.

ξ, = 2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 2.0

n = 0.5

χ = 0 2.00386 1.50377 1.00154 0.49600 0.50935 0.18076 0.09878 0.05012 0.03121

χ = 0.5 2.00964 1.53385 1.10192 0.74085 0.5348 0.27401 0.149699 0.07195 0.03383

χ = 1.0 2.05106 1.60800 1.20332 0.85152 0.5642 0.34945 0.19894 0.10278 0.04753

n = 1.0

χ = 0.5 2.0016 1.5106 1.0491 0.6543 0.3603 0.1719 0.0704 0.0242 0.0069

n = 2.0

χ = 0.5 2.00056 1.50550 1.03325 0.62278 0.3184 0.13244 0.04419 0.01156 0.0023
Table I.

Values of –Θ' (ξ, 0)
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Figure 3.
Velocity-distribution 
(n = 1)
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Figure 2.
Velocity-distribution
(n = 0.5)
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Figure 4.
Velocity-distribution 

(n = 2)
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Figure 5.
Temperature-

distribution (n = 0.5)
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Figure 7.
Temperature-
distribution (n = 2)
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Figure 6.
Temperature-
distribution (n = 1)
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Figure 8.
Nusselt number versus

χ (suction)
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Figure 9.
Nusselt number versus

χ (injection)
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Concluding remarks
In this paper, we have presented a boundary layer analysis for the problem of
mixed convection in non-Newtonian fluids along an isothermal vertical plate in
a porous medium with surface mass transfer. Numerical results are presented
for the velocity and temperature profiles as well as Nusselt number variation
with the combined convection parameter χ. The cases of suction and injection
have been examined as have the influence of the surface mass transfer and the
viscosity index on the surface heat transfer rate.
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